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Abstract- -The lumped-capacitance (LC) approximation for solid bodies suddenly exposed to constant- 
property environments is analyzed. A mathematical derivation of the LC approximation is presented for 
bodies of an arbitrary shape. A Blot number is treated as a small parameter, and asymptotic analyses of 
the parabolic heat equation are developed in terms of this parameter. The LC approximation is recovered 
to leading order, while first-order solutions include spatial temperature variations and provide error 
estimates involved with using the LC approximation. It is also shown that the LC approximation may 

sometimes be accurate when conventionally-defined Blot numbers are of order unity or greater. 

I N T R O D U C T I O N  

THE SCIENCE Of heat transfer has benefitted tremend- 
ously from the development of  numerical methods. 
Many problems that are impossible to exactly solve 
analytically may now be solved numerically for 
example, transient heat conduction in irregularly- 
shaped solid bodies. Though powerful numerical 
methods are widely available, it is sometimes desirable 
(e.g. because of  convenience or costs) to utilize 
approximate analytical solutions that introduce small 
errors but which are nonetheless useful for engin- 
eering calculations. An example of  this is the lumped- 
capacitance (LC) approximation used for analysis of  
transient conduction heat transfer problems involving 
surface convection effects. The LC approximation 
assumes that the temperature of  a solid body suddenly 
exposed to a convective environment  varies temp- 
orally but not spatially; in essence, the solid thermal 
conductivity is assumed to be infinite_ Because of  its 
simplicity, it is desirable to use the LC approximation 
whenever it may be accurately employed_ Hence, it is 
important  to understand the applicability and accu- 
racy of  this approximation.  To this end, asymptotic 
analyses are developed in this paper which show how 
the LC approximation may be formally derived from 
the parabolic heat equation for bodies of  arbitrary 
shape, and which also provide corrections to the LC 
approximation.  Moreover ,  it will be shown in separate 
analyses that under certain circumstances, the LC 
approximation may be accurately employed when 
temperature gradients at the surface of  a solid are not 
small. 

In the literature, e.g_ refs_ [1-3], it is generally 
accepted that temperature gradients in solid bodies 
being convectively cooled may be neglected if the Blot 
number (Bi) is sufficiently small. The Blot number is 
the ratio of  the product of  the convective heat transfer 
coefficient h and a characteristic length L to the solid 

thermal conductivity k (i_e. Bi = hL/k), and is typic- 
ally interpreted as a ratio of  solid and convective 
thermal resistances. The length L is sometimes defined 
as the ratio of  the body volume to the total body 
surface area. For  Bi >> I, conduction heat-transfer 
resistance in the solid is argued to be large relative to 
convective heat-transfer resistance between the solid 
and the environment, so that temperature gradients 
in the solid may be 'strong',  for Bi << 1, conduction 
heat-transfer resistance is argued to be small relative 
to convective resistance, so that temperature gradients 
in the solid may be 'gentle'. Applicability of  the 
lumped-capacitance approximation is sometimes 
justified by arguing that if Bi is sufficiently small, the 
lumped-capacitance approximation is valid since tem- 
perature gradients are gentle and may be neglected. 
Exact solutions of  the governing partial differential 
equations have been presented for simple geometries 
[1] and it can be shown that Bi<< 1 yields gentle 
temperature gradients, supporting the concept of  
lumped capacitance. 

It follows from energy conservation arguments [1] 
that within the context of  the LC approximation, the 
temperature history of  a solid is described by 

( T - T ~ ) / ( T , - T ~ )  = e x p [ - h A t / ( p V c ) ] .  (1) 

In equation (1), t is time, T the instantaneous solid 
temperature, T~ the initial solid temperature, T,. the 
(constant) environment temperature, A the surface 
area exposed to the fluid, V the solid volume, p the 
solid density, and c the solid specific heat (all solid 
properties are assumed constant). In reality, the solid 
temperature varies in both time and space, and the 
temperature field may be assumed to be governed by 
the heat equation 

OT/Sr = ~'V2T (2) 

where 0e is the thermal diffusivity (assumed constant). 
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A solid body surface area exposed to the T~ 
fluid t 

A, total surface area of the solid body V 
u inner surface of conical section x 
Bi Biot number defined after equations (3) z 

and (28) 
outer surface of conical section 

, C, integration constants :t 
solid specific heat fl,, 
variable defined after equation (5) 
variable defined after equation (13) F 
variable defined after equation (5) ® 
variable defined after equation (7) 
convective heat transfer coefficient 0 
variable defined after equation (15) 
Bessel function 0ix- 
variable defined after cquation (24) 
variable defined after equation (26) 0,, 

solid thermal conductivity 
characteristic length in the solid 0, 
variable defined after equation (29) 
outward normal unit vector ).,, 
conduction thermal resistance p 
convective thermal resistance r 
variable defined by equation (26) 
radius r' 
dimensionless surface areas defined after 
equation (3) r" 

T solid temperature 
7. initial solid temperature 4~ 

characteristic fluid temperature 
time 
solid volume 
physical coordinate system 
variable defined after equation (3). 

Greek symbols 
solid thermal diffusivity 
variable defined after equation (21) and 
in equation (27) 
solid angle of conical section 
dimensionless temperature defined 
before equation (9) 
dimensionless temperature defined 
before equation (3) 
dimensionless temperature defined by 
equation (28) 
average dimensionless temperature of the 
solid interior 
average dinaensionless temperature of the 
surface exposed to the environment 
variable defined before equation (18) 
density of solid 
dimensionless time defined before 
equation (3) and after equation (24) 
rescaled dimensionless time defined after 
equation (8) 
rescaled dimensionless time defined after 
equations (22) and (28) 
variable defined after equation (24) 

To solve equation (2), initial and boundary conditions 
must be specified. For example, we may impose an 
initial condition of T ( x ,  0), the convective boundary 
condition - k V T ' [ ]  = h ( T -  T , )  along the portion of 
the surface exposed to the fluid, VT' n = 0 elsewhere 
along the surface, and that VT = 0 somewhere inside 
the body (e.g. at a symmetry plane or point). Here, n 
is an outward normal unit vector at the solid surl:ace, x 
denotes position in the material, k is the solid thermal 
conductivity, and boldface characters denote vector 
quantities. 

In the following section, equation (2) is non- 
dimensionalized and Bi is identified as a controlling 
parameter. Asymptotic analyses are performed for Bi 

going to zero. The lumped-capacitance approxi- 
mation emerges as the lowest-order asymptotic solu- 
tion, while higher-order solutions display the effects of 
spatial temperature gradients. In all analyses, material 
properties are considered constant. 

ANALYSIS OF THE HEAT EQUATION 

Consider the situation where a solid body is initially 
at the uniform temperature T~. Assume that the body 

is suddenly exposed over some portion of its surface 
to a convective environment of constant temperature 
(T , )  which is characterized by the constant convective 
heat transfer coefficient h. Where the body surface is 
not exposed to the environment, it is considered to 
be insulated. In terms of the dimensionless tempera- 
ture 0 = ( T -  T~ )/(Ti - T~ ), the dimensionless time 
T = cttL'-, and the dimensionless spatial coordinates 
z = x /L ,  equation (2) and its boundary and initial 
conditions are 

g, O l ~  = V'-O, 0(z, 0) = 1, 

( V O ' n +  Bi  O), = (VO 'n )v  = 0 (3) 

where Bi = hL/k .  The spatial coordinates may be 
properly nondimensionalized by first expressing x in 
cartesian coordinates and then forming z = x /L .  

Transformation to other coordinate systems (e.g. 
spherical) may then be performed. In equation (3), 
the subscript s denotes the nondimensional surface 
area of the body exposed to the fluid, the subscript s" 
the remainder of the body surface, and L is selected 
to be a length which characterizes the conduction path 
length to the portions o1 the body furthest-removed 
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from the exposed surface. In terms of  physical vari- 
ables, s = A/L:  and s" = ( A , - A ) / L  2, where A, is the 
total surface area of  the body. In problems exhibiting 
symmetry, such as with spherically symmetric con- 
duction, the boundary condition V0 = 0 may be 
utilized. 

In the following it will be assumed that Bi << 1, and 
analyses of  equation (3) will be developed for Bi--. O. 
To proceed, the expansion 0 = Oo+Bi 0~+. . .  may be 
inserted into equation (2). Equating terms of  equal 
order in powers of Bi yields the leading-order problem 

~Oo/?'r = V20o, 0o(z,  0) = I, 

(V0. '  nL = (VO,," n).c = 0. (4) 

By inspection, the solution to equation (4) is simply 
0. = I. The first-order problem is then found to be 

~Oi/?r = V'-O~, O,(z ,O)=O,  

( V 0 , ' n ) ,  = - 1 ,  ( V 0 , ' n L .  = 0 .  (5) 

A solution to equation (5) may be written as 
0. = M r + f + g ,  where M is a constant, and f and g 
satisfy 

V2J= M, (V/"n), = - 1, (V/"n).c = 0 (6) 

C.¢]/~'C = V2g, (V.q'  n)., = (Vg" n), = 0, 

g(z, 0) = - f  (7) 

The variable f is a function of  z only, while 9 is a 
function of  both z and r. Equation (6) determines f ( z )  
only to within an arbitrary constant. Since ./(z) and 
g(z, z) are summed in the equation for 0~, the value 
of this constant is immaterial and is taken for sim- 
plicity to be zero in the rest of  this paper. Applying the 
divergence theorem to equation (6) yields M = - s / c ,  
where c =  V/L ~ is a nondimensional body volume. 
Inspection of  equation (7) shows tha tg  will approach, 
for r --, ~v, the constant solution 

The expansion for 0 may now be written as 

0 = I + B i [ - - ( s / v ) r + f + g ] +  . . .  (8) 

implying that equation (8) is valid for z << 1/Bi. The 
appearance of  B i t  suggests that the rescaled time 
r" = B i r  should be introduced for analysis of later 
periods (s/t, is treated as order unity)_ 

In terms of  "r' and the nomenclature G = O, equa- 
tion (3) becomes 

BiOG/Of = V 2 G ,  ( V G ' n + B i G L =  ( V G ' n L  = 0 .  

(9) 

Analysis in the r '  variable is for later periods of  time, 
so the initial condit ion has been neglected. Equation 
(8) may be considered an "inner' solution, while solu- 
tions of  equation (9) are "outer' solutions_ For  analy- 
sis, the expansion G = G 0 + Bi G ~ + Bi2 G_, + - - - may 

be inserted into equation (9), yielding the leading- 
order problem 

V 2 G o = 0 ,  ( V G 0 ' n ) , = ( V G , ' n ) ,  = 0 .  (10) 

The solution to equation (10) is Go = G0(z') such 
that G0 is an undetermined function of r'. The first- 
order problem is then 

d G o / d r ' = V ' - G i ,  ( V G l ' n + G t , ) ,  = (VGi 'n ) , .  = 0 .  

(11) 

Equation (11) may be integrated over the body 
volume, yielding (after application of  the divergence 
theorem) 

d G 0 / d r ' +  (s/c)G, = 0. (12) 

Equation (12) is the lumped-capacitance approxi- 
mation. Its solution is Go = C. exp ( - s z ' / v ) ,  where 
C~ is a constant that will be determined by matching 
to the inner solution. 

The solution to equation (11) may be written as 

Gi =./Ci exp ( - s r ' / t ' )+G.  (13) 

In equation (13), G is a function of ' r '  only and may 
be evaiuatcd by considering the second-order problem 

- (s/v)fCi exp ( - s r ' / t ' )  + (dG/d¢)  = V2G,_, 

( V G , _ ' n + G . ) , = ( V G , _ ' n ) , . = O  (14) 

and , / i s  defined after equation (5). Equation (14) may 
be integrated over the solid volume to yield 

(dG/dr')+(s/v)G = C I l e x p  ( -sz ' / t ' )  (15) 

where 

The solution to equation (15) may be written as 
G = IC~(vC2/s+r') exp ( - s r ' / v ) ,  where C2 is a con- 
stant of  integration. The outer expansion may there- 
fore be written as 

O = C~ exp ( - s¢ / t , ) [ I  +B i ( l '+h 'C 2 / s+I r ' ) ]+ . . - .  

(16) 

Matching equations (8) and (16) yields C~ = 1 and 
C, = sc)/(h,). A composite solution (which satisfies 
the initial condition 0(z, 0) = I) may then be written 
as 

0 = exp ( -- Bi rs/t,)[l + Bi( 1 + ~ +  I Bi z)] 

+ B i ( g - ~ ) + . - . .  (17) 

In equation (17) the lumped-capacitance solution is 
simply the leading-order term, exp ( -Bi t s~t , ) ,  and 
first-order corrections are of  the order of  Bi. The 
appearance of  Bi'-z suggests that equation (17) is 
valid for z << l/Bi'-. For description of  temperatures at 
later times, more analysis may be needed, as described 
below. 
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APPLICATIONS 

We may use equation (17) to analyze transient 
spherically-symmetrical conduction in a solid sphere 
whose entire surface is suddenly exposed to a con- 
vective environment. For  this case we may select 
L = V/A~ so that s/v = 1. The governing equation for 
f is then 

d 2/]dz2 + (2/z) d./]dz = - I, (dl/dz)_-_ ~ = - I 

where z is a nondimensional radial coordinate (0 ~< 
z ~< 3). The solution f o r / i s  -_-2/6. Using this, g may 
be found with standard mathematical techniques [4] 
to be 

g = 9/10+ l/(81z) ~ exp (--2,~r)(9+ 1/1,~) 
n I 

f x sin (2,,-) _5 sin (;.,z) d-  

where 2,, values are roots of  32. = tan 3;~,,, and 2~ > 0. 
The integral I is found to have the value 3/5. The 
temperature field in the sphere is then approximated 
by 

0 = exp ( - B i  r)[1 + B i ( 9 / l O - - 2 / 6 + 3 B i  r/5)] 

+ B i ( g - 9 / l O ) + . . . .  (18) 

Equation (18) illustrates that temperature gradients 
in the solids relax to quasisteady profiles over time- 
scales of  r ~< O(1) while bulk temperature changes 
occur over timescales of  r = O(I /Bi)  

Equation (18) may also be derived by expanding 
the exact solution [1] for B i ~  O. When this is done, 
it is found that the terms 1+3Bi  2 r/5 appearing in 
equation (18) arise as an expansion o f exp  (3Bi 2 r/5), 
which occurs naturally as a multiplier of  exp ( - Bi r) 
in the expansion of  the exact solution. In equation 
(17), I + l B i 2 r  may then be an expansion of  a 
term such as exp (IBi '-r) ,  which would multiply 
exp ( -  Bi st~v). It may be possible to formally recover 
a term analogous to exp (I Bi 2 z) with multiple-scale 
theory (see, e.g. ref. [5]), which should render the ex- 
pansion uniformly valid for all times. Such analyses 
have not been performed. It is interesting to note, 
though, that expanding exp (I Bi'- r)[1 + Bi(f+~)] for 
Bi ~ 0 yields I + B l ( f  + ~) + l Bi'- r + O( BiS). I fwe  use 
this result in equation (17), the following expression 
is obtained : 

0 = exp [ -  Bi zs/v( 1 - I Bi vls)][l + B i ( f+9)  ] 

+ B i ( 9 - 9 ) + .  (19) 

Substitution shows that equation (19) satisfies the 
original partial differential equation and initial and 
boundary conditions (equation (3)) to first order, and 
is thus a valid asymptotic solution. Equation (19) 
appears in addition to be uniformly valid in z. 

In reference to equation (19), equation (18) may be 
rewritten as 

0 = exp [ - B i z ( l - 3  Bi/5)][l +Bi(9/10-_-2/6)] 

+ B i ( g - - 9 / l O ) + . . . .  (20) 

For an infinitely long cylinder whose entire surface is 
suddenly exposed to the convective environment,  the 
corresponding solution (based on equation (19)) is 
found to be 

0 = exp [ -  Bi "r( 1 - Bi/2)][I + Bi ( l /2 - -2 /4)]  

+(Bi/18) Z exp (-fl,2,r)[Jo(fl,,-..)/Jo(2fl,,)] 
n -  I 

f x --~Jo(fl,,--)+ "'" (21) 

where - is the nondimensional radial coordinate 
(0 ~< - ~< 2), J0 is a Bessel function, and dJo/d-- = 0 at 
- = 2fl,,. For an infinite slab suddenly exposed on both 
sides to a convective environment,  it is found that 
equation (19) yields 

0 = exp [ - B i z ( 1 - B i / 3 ) ] [ 1  +Bi(l /6--z2/2)]  

+ 2  Bi Z [( - I )"/(nrt) 2] cos (nrE-) exp (-n2rt-~'r) + --- 
i i  I 

(22) 

where z is the nondimensional planar coordinate as 
measured from the slab midplane ( - I  ~< z ~< 1). In 
equations (21) and (22), L = V/A, such that s/v = 1. 
Equations (21) and (22) may also be derived by 
expanding the exact solutions [1] for B i ~  O. 

Shown in Fig. I are comparisons of equation (22) 

10 o 
. . . . . .  Exact Solution 

~ , ' ~ _  - -  equation (22) 
- -  equation (23) 

0 to-, Bi_-o.5 

I0 -2 z = 0 Bi =~0_l, ~ " ~  

0 l 2 3 4 5 ,.~,, 

(a) 

10 0 
~ , ,  . . . . . .  Exact Solution 

- -  equation (22) 
- -  equation (23) 

0 10"l ~ - - ~  ~ =  0.5 

z = ± t  Bi 

10_2 , LC Solutiorr-----~, "..~.."~, 

l 2 3 4 5 

(b) 
FXG. I. Comparison of equations (22) and (23) and the LC 
and exact solutions for transient conduction in a plane wall 

at: (a) z = 0; (b) z = _+l. 
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and the exact solution [1] for conduction in a plane 
wall. For "r /> 1, the infinite sum in equation (22) is 
negligible relative to the first term. The LC solution 
(equation (1)) is also plotted for comparison, as is the 
asymptotic solution based on equation (17), which is 
given by 

0 = exp ( - -B i  r)[l + B i ( I / 6 - z 2 / 2 + B i  "r/3)] 

s 

+ 2  Bi ~ [( - l)"/(nr0-'] cos 0mr) 
i i  I 

× e x p ( - n : n - ' r ) + - - - .  (23) 

The timescale is selected to be r" = B i r  such that the 
right-hand side of  equation (1) is 0 = exp (r") For  
Bi = 0.1, differences between the exact solution and 
equations (22) and (23) are difficult to distinguish on 
the graph. In Fig. 1 it is evident that equation (22) 
provides good results even for Bi as large as 0.5. 
Results from equation (23) are an improvement  over 
the LC solution, but are not as accurate as equation 
(22). 

ANALYSIS FOR Bi >1 O(1) 

In this section, it will be demonstrated that cir- 
cumstances may exist where the LC approximation is 
accurate even if Bi as previously defined is of  order 
unity or greater. To illustrate concepts, a specific prob- 
lem will be posed and solved. The problem to be 
considered is for spherically-symmetrical conduction 
in a conical section of  a hollow sphere. The inner 
surface (at the radius r =  a) is exposed to a fluid 
characterized by the constant temperature T~ and the 
constant heat transfer coefficient h. The outer surface 
(at r = b) is thermally insulated. The heat equation 
and boundary and initial conditions for the solid may 
be expressed in nondimensional form as 

~(Oz)/QT = ~'-(O-)/c~z'-, O(z,O) = 1, 

(O0/Oz--dpO):_j = (~30/~z):_, = 0 (24) 

where for this analysis z = r/b. j = a/b. q5 = hb/k, 
r = kt / (pcb2) ,  and 0 = ( T -  T~ )/(T, - T,_). Equation 
(24) has the exact solution [4] 

0 = (2/z) Z exp (- f l ,~z)R,,(z)  zR,,(z) dz (25) 
n =  I 

where 

R,,(:) 

[1 + fl,~] ' 2[K sin (z _j)fl, ,  +jfl,, cos (z -j)fl , ,] 

[(1 - j ) ( j - f l g  + K-)(fig + 1 ) + (K- j ) ( j f l ,~  - K)] t/_, 

(26) 

K = j ~ b +  1, and --I- fl,,, n = 1, 2 . . . .  are roots of  

tan [ ( l - - j ) f l , , ] - f l , , (K- j ) / ( j f l , ~+K)  = 0. (27) 

In terms of  the nondimensional variables, the LC 
solution (equation (1)) may be rewritten as 

OLC = exp ( - r " )  (28) 

where r " =  3~b,,"--c/(1-j ~) is a nondimensional LC 
timescale. We may also define a Blot number as 
Bi = hL/k  = ~b( l - j ) ,  where L = b - a .  

Plotted in Figs. 2(a) and (b) are OLC and equation 
(25) for t k = 10 and various values o f j .  The series in 
equation (25) was summed until remaining terms were 
negligible. The results in Figs. 2(a) and (b) are for the 
inner surface (- = j ) .  Figures 3(a) and (b) compare the 
exact and LC solutions for ~b = 10 and various values 
of  j ,  but at - = I (the outer surface). In Figs. 2 and 3, 
it is evident that the LC approximation yields accurate 
results for j - - , 0  or I. For  intermediate values of  j ,  
errors are significant. Though not presented, other 
calculations showed that as ~b decreases, errors de- 
crease. For  ~b ~< 0 1, differences between the LC and 
exact solutions were very small for all values of j .  It is 
stressed that the increased accuracy of the LC solution 
for j---, 0 did not require Bi << I. In fact, for these 
results Bi---, 10 as j---, 0. 

These trends may be understood if the problem is 
reanalyzed in terms of  thermal resistances. To begin, 
we may note that equation (I) defines pVc/ (hA)  as a 
characteristic time for significant lumped temperature 
changes to occur. If this time is large relative to the 
characteristic time L2/~ for thermal waves to propa- 
gate through the body (i.e. h A L 2 / ( k V )  << 1) it may be 
concluded that nearly quasisteady temperature pro- 
files are set up in the solid for r" << 1. These profiles 

100 

0 lOI 

10-2 
0 

~ , , . ~ ,  j = 0.5 

•  ,=10 LCMo'g' d" K '. " . . . .  

z=, j=0.00t 
j=o.& ~ .... 

l 2 3 4 5 

(a) 

10 0 

0 to-i 0.99 

z = j j = 0.999 ~ ,  
10-2 

0 l 2 3 4 5 

(b) 

FIG. 2. Comparison of the LC (solid lines) and exact 
(dashed lines) solutions at z = j  for: (a) 0.001 ~<j~< 0.5, 

(b) 0.5 ~<]~< 0.999. 



1004 B.D.  SHAW 

100 

0 to -t 

10-2 

~:-~2~" ....... j = 0_5 

222"-222- ............ ~ j =o_J 

z : l  j= 0_001 j :  0.--~1 " ~ ' - ,  

0 l 2 3 4 5 

(a) 

100 
~ . .  j~0_5 j-0_8 
] ~,~.~'--'S2"--.'." . . . . .  -q/. • j = 0.9 

O 10"1 t , ~ _ l ~  ~iiiii-''''~::'~::'';~i2~b/'" .... -. __ j=0.9... 
Z --1 ;_:0.999 

10-2 
0 1 2 3 4 ,,~" 

(b) 
FIG. 3. Comparison of the LC (solid lines) and exact 
(dashed lines) solutions at - =  I for: (a) 0.001 ~<j<~0.5: 

(b) 0.5 ~< / ~< 0.999. 

temperature profiles near the solid surface exposed to 
the convective environment be established for times 
l'" << 1_ 

For the problem described by equation (24), it will 
be assumed that R~o,,a = (To-T,)/[kFa'-(~T/Or)~_,,] 
and R~,°, = l/(kVa'-), where F is the solid angle of  the 
conical section and temperatures are evaluated by 
considering only the first term in equation (25) It 
then follows that 

m = [(1 +jq~)/[3.] sin [(1- , / ) i l l ]  +. /cos [ ( 1 - / ) f l , ] -  I. 

Equations (25), (28), (30) and (31) are compared in 
Figs. 4 and 5 for ~b = 10 and various values of.j.  In 
these figures it is evident that equations (30) and (31) 
can provide reasonable corrected expressions for 
predicting nondimensional temperatures (differences 
between equations (25) and (30) or (31) for j =  0.1 
and 0.99 are difficult to distinguish on the graph). 
There are two values of  j which produce a given 
value of m (see Fig. 6). Interestingly, it is the smaller 
of the two j values for which equations (30) and (31) 
produce better results. This is probably because the 
expression used for m is more accurate f o r j  ~ 0 than 
for j ~ I. If  more accurate expressions for m were 
used for j near unity, it is expected that the corrected 
expressions would be more accurate. It is noted that 
equations (30) and (31) provide quite good results for 
j as large as 0_2, which corresponds to m = 1.44. 
For  j = 0.5 (and m = 1.90) equations (30) and (31) 
provide acceptable order-of-magnitude results for 0_ 

will exist over most of  the cooling (or heating) history 
of  the solid. For  further analysis, assume that the 
bulk of the interior is at the average nondimensional 
temperature 0o, while the exposed surface is at the 
nondimensional temperature 0~. Assume that the ther- 
mal resistance R~o°d for conduction heat transfer from 
the interior to the surface exposed to the environment 
may be defined, as well as the convective heat transfer 
resistance Rco,,.. In terms of  these thermal resistances, 
it then follows that 0 o - 0 ,  = 0ore/(1 +m) ,  where m = 
Rco,d/R ..... is a Biot number. From energy conserva- 
tion, the time rate of  change of  0o may be assumed to 
be proportional  to 0, such that the following equation 
will approximately hold : 

d0o/dr"+0o/ ( l  + m )  = 0. (29) 

The solution to equation (29) is 

0o = exp [ - - t " / ( l  +m)]  (30) 

where the initial condition 0o(r" = 0 ) =  1 has been 
applied. Equation (30) may be viewed as a corrected 
version of  the LC solution ; it approximately accounts 
for the finite resistance to conduction heat transfer 
out of  the solid. If m << 1, corrections are negligible 
for r" << l/m_ For  0s, we may write 

0~ ~ 0o/(1 +m).  (31) 

Use of  equation (31) for accurately describing 
temperatures for ~" > /O( I )  requires that quasisteady 
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FIG. 4. Comparison of LC, exact, and corrected LC solutions 
a t z = j f o r : ( a )  0.001 ~<j~<0.5;(b) 0.8~<j~<0.99. 
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FIG. 5. Comparison of LC, exact, and corrected LC solutions 

a t z =  I for:(a) 0.001 ~<]~<0.5:(b) 0.8 ~<.]~<0.99. 
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Fit;. 7. Comparison of LC, cxact and corrected LC solutions 

with m = 4~]( [ - j ) .  

It is expected in general that i f hAL ' - / ( kV)  << I and 
if m is not too large and can be well estimated, the 
correction formulas (equations (30) and (31)) should 
be applicable to other problems that cannot be exactly 
solved analytically. For  example, we may suppose that 
equation (25) cannot be solved exactly, making it 
difficult to evaluate m. For  j << 1, though, it should 
be reasonable to assume that the quasisteady tem- 
perature profiles are similar to steady-state spheri- 
cally-symmetric conduction profiles such that R~o,,a 
( I / a - 1 / b ) / ( F k ) ,  yielding m = ~ j ( 1 - j ) .  As shown 

m 

iO 1 

100 

10-I 

10.2 / 
10-3 

~ = 1 o  

~........ ........ , ....... 
10"2 10 -1 l00 

J 
FIG. 6. Plot ofnt vs/. 

1o 1 

in Fig. 7, use of  this relation produces very good 
estimates for transient temperatures for .[~<0.1 
(m ~< 0.9) (differences between equations (25) and 
(30) or (31) for.] = 0.01 are difficult 1o distinguish 
on the graph). For  larger values of  j ,  agreement 
with equation (25) is typically within an order of  
magnitude. 

It is interesting to note that the LC approximation 
may be recovered in an asymptotic sense by expanding 
equations (25)-(28) for the limit j - ,  0. Expansion 
of  equation (27) yields the result that for the first 
root, /J~ ~ 31-'4~ << 1, while for the second root, 
7r -~ < (1 -j)~-[:]~ < 9n-'/4. Therefore, terms in the series 
for n > 1 are negligible for r o fo rde r  unity or greater. 
This is reasonable, since (for j << I) r of  order unity 
defines characteristic times for propagation of  
thermal waves through the body. For j - - , 0 ,  R t is 
approximately -(3/2)~'-', and the first integral in equa- 
tion (25) has the approximate value (1/6) I:-'. Sub- 
stitution of  these relations into equation (25) yields 
0 ~ exp (-3j-'4~z). This relation, which exhibits no 
spatial dependence, is the leading-order term in an 
expansion of  equation (28) f o r j  --, 0. Further  analysis 
shows that 0 differences between the inner surface and 
the bulk of  the body are of  order q~/. It is also found 
that nondimensional temperature gradients are of  
order ~b in a thin region near the inner surface (where 
z is of  order ]). Outside this region, nondimensional 
temperature gradients are small relative to unity. 
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S U M M A R Y  AND CONCLUSIONS 

Transient  heat  t ransfer  in an isotropic body sud- 
denly exposed to a convective and cons tan t  property 
env i ronment  has been studied. The heat equat ion  was 
nondimensional ized,  and  asymptot ic  analyses were 
performed for Bi--, 0 for bodies of  arbi t rary  shape. 
The leading-order  solution recovered the lumped- 
capaci tance (LC) approximat ion .  The first-order solu- 
tion included the effects of  non-zero  tempera ture  
gradients  in the body, and provided error  estimates 
for the LC approximat ion .  

The exact solution for the temperature  history of  
a conical section of  a hollow sphere exposed on 
its interior  surface to a convective env i ronment  
was analyzed. Results showed that  the LC solution 
may be recovered from the exact solut ion even if non-  
dimensional  tempera ture  gradients  at the solid surface 
are not  small relative to unity. If  Bi is properly for- 
mulated as a ratio of  conduct ive and convective ther- 
mal resistances, applicabili ty of  the LC approx imat ion  
is easily deduced. 

An approximate  theory was developed to provide 
correct ions to the LC approximat ion .  When Rc,,°d/ 
R,,I., is well est imated and is not  too large, the 

approximate  theory provides good results. For  the 
s i tuat ion considered here, R~o,d/R . . . .  < 1 provided 
accurate  results. 
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